Longitudinal data analysis for generalized linear models under participant-driven informative follow-up: an application in maternal health epidemiology.

نویسندگان

  • Petra Bůzková
  • Elizabeth R Brown
  • Grace C John-Stewart
چکیده

It is common in longitudinal studies for scheduled visits to be accompanied by as-needed visits due to medical events occurring between scheduled visits. If the timing of these as-needed visits is related to factors that are associated with the outcome but are not among the regression model covariates, naively including these as-needed visits in the model yields biased estimates. In this paper, the authors illustrate and discuss the key issues pertaining to inverse intensity rate ratio (IIRR)-weighted generalized estimating equations (GEE) methods in the context of a study of Kenyan mothers infected with human immunodeficiency virus type 1 (1999-2005). The authors estimated prevalences and prevalence ratios for morbid conditions affecting the women during a 1-year postpartum follow-up period. Of the 484 women under study, 62% had at least 1 as-needed visit. Use of a standard GEE model including both scheduled and unscheduled visits predicted a pneumonia prevalence of 2.9% (95% confidence interval: 2.3%, 3.5%), while use of the IIRR-weighted GEE predicted a prevalence of 1.5% (95% confidence interval: 1.2%, 1.8%). The estimate obtained using the IIRR-weighted GEE approach was compatible with estimates derived using scheduled visits only. These results highlight the importance of properly accounting for informative follow-up in these studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse intensity weighting in generalized linear models as an option for analyzing longitudinal data with triggered observations.

Longitudinal epidemiologic studies with irregularly observed categorical outcomes present considerable analytical challenges. Generalized linear models (GLMs) tolerate without bias only values missing completely at random and assume that all observations contribute equally. A triggered sampling study design and an analysis using inverse intensity weights in a GLM offer promise of effectively ad...

متن کامل

Practice of Epidemiology Inverse Intensity Weighting in Generalized Linear Models as an Option for Analyzing Longitudinal Data with Triggered Observations

Longitudinal epidemiologic studies with irregularly observed categorical outcomes present considerable analytical challenges. Generalized linear models (GLMs) tolerate without bias only values missing completely at random and assume that all observations contribute equally. A triggered sampling study design and an analysis using inverse intensity weights in a GLM offer promise of effectively ad...

متن کامل

Does Type of Pain Predict Pain Severity Changes in Individuals With Multiple Sclerosis? A Longitudinal Analysis Using Generalized Estimating Equations

 Background & Objective:  Pain is a common symptom among people with MS. In the majority of MS patients, pain is chronic in nature, but it can change over time. The objective of this study was to determine if pain type can predict pain severity changes in individuals with MS over time.  Materials & Methods:  The research method was a longitudinal design that evaluated pain type and severity at...

متن کامل

Extension of Logic regression to Longitudinal data: Transition Logic Regression

Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...

متن کامل

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of epidemiology

دوره 171 2  شماره 

صفحات  -

تاریخ انتشار 2010